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This project is to develop techniques for controlling conductive thermal transport through 

excitation and manipulation of coherent phonons in a material. Fundamental studies of coherent 
phonon generation and interactions with other energy carriers were carried out for the 
development of the technique. The main method employed in this project is a temporal pulse 
shaping technique to generate femtosecond laser pulse trains and to excite, enhance, and/or 
suppress coherent phonons in a material. The method developed was also used to investigate 
phonon scattering and energy transfer in many emerging materials of engineering importance. 
Major accomplishments of this project include: 

(1) Developed method and experimental apparatus for generating ultrafast laser pulse trains 
and method and experimental apparatus of using ultrafast laser pulses to excite and 
manipulate coherent phonons in materials.  

(2) Demonstrated that coherent phonons can be used to control thermal transport and phase 
change in a material.  

(3) Utilized control phonon generation and manipulation to investigated phonon dynamics 
and thermal transport in a number of materials, in particular, nanoscale materials 
including superlattices, filled-skutterudites (a thermoelectric material), and quantum dots.  

 
Details of these results are described below: 
 

(1) Development of method and experimental apparatus for generating ultrafast laser pulse 
trains and method and experimental apparatus of using ultrafast laser pulses to excite 
and manipulate coherent phonons in materials.  

 
We have developed an experimental apparatus for generating ultrafast pulse trains with 

50 fs pulse durations, and use these pulse trains to manipulate phonon vibrations. In Figure 1, we 
produce a pulse train of four pulses, with different pulse-to-pulse separation times, and observe 
their effects on phonon vibration, i.e., stronger phonon vibration is obtained when the pulse-to-
pulse separation time matches phonon vibration, and weaker phonon vibration is obtained when 
the pulse-to-pulse separation time is out of phase with phonon vibration. This is termed coherent 
control of phonon vibration. In addition, we have observed phonon softening (decrease in 
phonon vibration frequency) at high laser intensity.  
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Fig. 1: Coherent oscillation in Bi, generated by four pulses. Black line: the four pulses are 
separated by a time interval corresponding to the vibration period of Bi phonon mode. Red and 
green lines: the four pulses are separated by a time interval different from the vibration period. 
Apparently, when the pulse-to-pulse separation is in synch with phonon vibration, the phonon 
vibration is enhanced; whereas when the pulse-to-pulse separation is out of phase with the 
phonon frequency, phonon vibration is suppressed (green line). 
 
(2) Demonstration of coherent control of thermal transport and phase change.  
 

One indication that phonon oscillation has a large effect on thermal transport is that 
material is damaged differently with different types of pulse trains.  In Figure 2, the Bi surface is 
irradiated by two pulses, with different pulse-to-pulse separation time, but the same total energy. 
(Each experiment was done six times, shown vertically in the figure.) It can be seen that there are 
clear differences in the surface morphology, even the total laser energy is the same. A detailed 
analysis of the materials damage allowed us to determine the influence of phonon vibration on 
energy transfer.  

 

 
Fig. 2: Optical micrograph of surface of Bi irradiated by two laser pulses for phonon 
enhancement (column 1 and 3) and phonon cancellation (column 2 and 4). The total energy of 
the laser pulses are the same. 
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Figure 3 shows the multi-pulse damaged area as a function of laser fluence for 5,000 (a) 
double-pulse and (b) four-pulse excitation designed to enhance and cancel coherent phonon 
oscillations. It is seen that for both cases, the damage areas caused by enhancing phonon 
oscillations are larger than those when phonon oscillations are suppressed. It was also found for 
double-pulse excitation, the minimum total fluence required for damage with 5,000 pulses was 
3.2 mJ/cm2 for phonon enhancement and 3.9 mJ/cm2 for phonon cancellation. For four-pulse 
excitation, a total laser fluence of 5.9 mJ/cm2 was needed to damage for phonon enhancement 
and 6.3 mJ/cm2 was needed for phonon cancellation. The differences in the damage area and in 
the minimum fluence required to obtain multi-pulse damage when the coherent phonon 
oscillations are enhanced and cancelled indicate the effect of the coherent phonons on thermal 
transport and materials phase change. 

 
 

Fig. 3: Area of visible damage as a function of the incident pulse fluence for 5,000 
(a) double-pulse and (b) four-pulse pulse trains designed to enhance and cancel 
coherent phonon oscillations.   

 
(3) Investigations of phonon dynamics and thermal transport in materials 

 
We used the method developed in this projecgt to investigate phonon dynamics in a 

number of materials, including Bi2Te3, Sb2Te3, and Bi2Te3/Sb2Te3 superlattice and misch-metal 
filled skutterudites. These studeis reveal phonon interactions with other energy carries, physical 
boundaries, and other modes of phonons, and help to gain a better understanding on the thermal 
transport process in these materials and methods to obtain the desired thermal transport 
properties.  

 
Figure 4 shows optical phonon oscillations in Bi2Te3/Sb2Te3 superlattice at different laser 

fluences. By comparing the coherent phonon lifetimes, it was found that the phonon scattering 
rate (inverse of lifetime) in superlattice is significantly higher than those in Bi2Te3 and Sb2Te3. 
This represents the first direct measurement of coherent phonon lifetime reduction in superlattice 
structures, consistent with the observed reduction in thermal conductivity in superlattices. The 
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interaction/scattering between phonon-electrons, phonon-phonon, and phonon/interface have all 
been determined.  
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Fig.4 . Coherent phonon vibration signal for 2 3Bi Te /  superlattice. 2 3Sb Te

 
 We also developed methods for investigating acoustic phonon scattering in nano-
engineered materials. Measurements of acoustic phonons are important as acoustic phonons are 
directly related to heat transport. Acoustic phonons were excited using a femtosecond pulse at 
the front of the sample surface, then measured when they were reflected back to the surface from 
the thin film – substrate interface using another femtosecond laser beam. The goal of these 
measurements is to understand the phonon scattering at interfaces, and therefore to understand 
the mechanisms of thermal conductivity reduction which is desirable for thermoelectric materials.  
 

Our results indicate that there is significant phonon scattering in superlattices (Fig. 5b and 
5c), where as scattering in bulk film sample is insignificant (Fig. 5a). Further analyses indicated 
a decrease of acoustic phonon velocity resulted from folding and flattening of phonons branches. 
Therefore, both the interface scattering and a lower phonon group velocity contribute to 
suppressing the heat transfer process. In addition, the deviations from acoustic mismatch theory 
have been observed.  

 
We also invesitgated phonon dynamics in a number of other nano-engineered materials, 

including vibrational behaviors in misch-metal filled antimony skutterudites, an important 
thermoelectric materials which has great potential to be used for energy harvesting from waste 
heat. Figure 6 shows the detected vibration signatures of the filled elements.  The reduction of 
lattice thermal conductivity – desirable for thermoelectric materials, over a wide temperature 
range can be explained using the measured resonant vibrational frequency which was obtained 
by performing Fourier transform on the data shown in Fig. 6. Our findings revealed that the 
reduction of lattice thermal conductivigty is a result of scattering of acoustic phonons due to the 
resonant interaction between guest atoms and lattice phonons. 
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Fig. 5: Phonon amplitude measured in (a) bulk Bi2Te3 film with difference thicknesses, (b) 1 
nm Bi2Te3 /1 nm Sb2Te3 superlattice with different thicknesses, (c) 3 nm Bi2Te3 /3 nm Sb2Te3 
superlattice with different thicknesses. It is seen that phonon scatting in bulk films is 
insignificant (no visible change in phonon amplitude), whereas phonon scatting in the two 
superlattice samples is evident.  

 

  
Fig. 6: Oscillation in filled-skutterudites. Relationship between these vibrations and thermal 

conductivity reduction was established.  
 

Summary 
 

In summary, this AFOSR sponsored project has resulted in significant accomplishments 
in the developoment of advanced laser-based technologies for generating and manipulating 
coherent phonons. The technique is used for the control of thermal transport and phase change. 
In addition, the method developed was used for investigating phonon dynamics and thermal 
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transport in many materials, providing fundamental understandings of thermal transfer relevant 
to their engineering applications. It is expected that the knowledge and experimental tools 
developed in this work will continue to make contributions in thermal sicnece research in 
emerging materials.  
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